
Comparing Evolutionary Strategy Algorithms
for Training Spiking Neural Networks

José S. Altamirano, Manuel Ornelas, Andrés Espinal, Raúl Santiago, Héctor
Puga, Mart́ın Carṕıo, and Sergio Tostado

Tecnológico Nacional de México, Instituto Tecnológico León, León, Gto., México
josesaltf@gmail.com,mornelas67@yahoo.com.mx,

andres.espinal@itleon.edu.mx

Abstract. Spiking Neural Networks are considered as the third gen-
eration of Artificial Neural Networks, these neural networks naturally
process spatio-temporal information. Spiking Neural Networks have been
used in several fields and application areas; pattern recognition among
them. For dealing with supervised pattern recognition task a gradient-
descent based learning rule (Spike-prop) has been developed, however
it has some problems like no convergence. To overcome these prob-
lems, metaheuristic algorithms such as Evolutionary Strategy have been
used. In this work, three variants of the Evolutionary Strategy algorithm
are compared for training Spiking Neural Networks. Several well-known
benchmark dataset are used to test the capabilities of the algorithms.

Keywords: Spiking Neural Network, Evolutionary Strategy, Pattern
Recognition.

1 Introduction

The Artificial Neural Networks (ANNs) are capable of modeling complex no
linear systems, and can be used to solve a great number of day-to-day problems
such as pattern recognition, optimization, prediction, function approximation,
etc. [1].

In the last years, the third generation of ANN [2], Spiking Neural Networks
(SNNs), have gained importance due to the inclusion of the firing time com-
ponent in the neuron’s process. This is obtained by coding the information in
spike trains instead of spike rates as in the Second Generation of ANNs. That
makes SNNs more similar to the biological neurons [3,4,5], and increases their
computational power [6].

For the training process of SNNs, there has been developed a gradient-descent
based learning rule, Spikeprop [7]. However it has some drawbacks such as the
limitation on using negative weight values, convergence not guaranteed due to
its tendency to end trapped in local minima, etc. [8].

To overcome these disadvantages, there had been some works about the use
of metaheuristic algorithms for the learning process of the SNN [9,10,8,11].
In this work we compare the performance of three variants of Evolutionary

9 Research in Computing Science 96 (2015)pp. 9–17; rec. February 27, 2015; acc. May 22, 2015

Strategy algorithms for the training process of SNN by testing three classical
benchmarks data sets: Breast Cancer Wisconsin, Iris Plant and Wine, (from the
UCI Repository [12]).

This document is organized as follow: Section 2 gives fundamentals for simu-
lating SNNs. Section 3 explains the implemented methodology used for training
SNNs. The experimental design and results are showed in Section 4. Finally, in
Section 5 conclusions and future work are presented.

2 Spiking Neural Networks

A neural network can be defined as an interconnection of neurons, such that
neuron outputs are connected to other neurons, even with themselves; both
lag-free and delay connections are allowed [13]. There are several models or
topologies of ANNs, which are defined around three aspects: computing nodes,
communication links and message types [14].

In this work a fully-conected feed-forward SNN was used, which is defined as
follows: the computing nodes are spiking neurons defined by the Spike Response
Model (SRM), the communication links are formed by synaptic weights (exci-
tatories and inhibitories) and positive delays values, and the message types are
ruled by the time-to-first spike coding scheme.

2.1 Spike Response Model

The SRM has been introduced in [15], and it is an approximation of the dynamics
of integrate-and-fire neurons. The neuron status is updated through a linear
summation of the postsynaptic potentials resulting from the impinging spike
trains at the connecting synapses. A neuron fires whenever its accumulated
potential reaches the threshold (θ) from below (Fig. 1).

Fig. 1. Weighted input summed at the target neuron. Taken from [9]

In the SRM is consider that a neuron j has a set Γj of immediate predecessors
called presynaptic neurons and receives a set of spikes with firing times ti; i ∈ Γj .
The internal state of a neuron is determined by Eq. (1), where wji is the synaptic

10

José S. Altamirano, Manuel Ornelas, Andrés Espinal, Raúl Santiago, Héctor Puga, et al.

Research in Computing Science 96 (2015)

weight to modulate yi (t), which is the unweighted postsynaptic potential of a
single spike coming from neuron i and impinging on neuron j.

xj (t) =
∑
i∈Γj

wjiyi (t) (1)

The unweighted contribution yi (t) is given by Eq. (2), where ε(t) defines a
spike response function describing a standard form of the postsynaptic potential.

yi (t) = ε(t− ti − dji) (2)

The function ε(t) is modeled by Eq. (3)

ε(t) =
t

τ
e1−(t/τ) for t > 0, else ε(t) = 0 (3)

where: t is the current time, ti is the firing time of the presynaptic neuron i
and dji is the associated synaptic delay. Finally the function has a τ parameter,
that is the membrane potential time constant and define the decay time of the
postsynaptic potential. Both θ and τ are constant and equal for all the neurons.

3 Metaheuristic Based Supervised Learning

Learning is a process by which the free parameters of a neural network are
adapted through a process of stimulation from the environment in which the
network is embedded. The type of learning is determined by the manner in
which the parameter changes take place [16]. In this case, the learning is driven
by an Evolutionary Strategy algorithm, and we refer to this learning process as
Metaheuristic Based Supervised Learning.

In Metaheuristic-Based Supervised Learning, each individual contains all the
free parameters of a previously structured SNN. Every individual is evaluated
by means of a fitness function. To calculate the individual’s fitness value the
following steps are requiered: the first step makes a mapping process; this sets
the individuals parameter as weights and delays in the SNN (Fig. 2). The
second step uses the batch training as learning protocol, where all patterns are
presented to the network before the learning takes place [17]. The third step
is to calculate an error (to be minimized) according Eq. (4) (taken from [9]);
where T are all training patterns, O are all output spiking neurons, tao(t) is the
current timing output of the SNN and tto(t) is the desired timing output. The
error calculated using Eq. (4) determines the fitness value of each individual and
drives the supervised learning based on metaheuristic algorithms.

E =

T∑
t

∑
o∈O

(
tao(t)− tto (t)

)2
(4)

Next are presented the variants of Evolutionary Startegies used for training
SNNs.

11

Comparing Evolutionary Strategy Algorithms for Training Spiking Neural Networks

Research in Computing Science 96 (2015)

Fig. 2. Generic scheme for training SNNs with metaheuristic algorithms. Taken
from [11]

3.1 Evolutionary Strategy

Evolutionary Strategy (ES), a variant of the Evolutionary Algorithms, was founded
by students at the Technical University of Berlin (TUB), and although in the
beginning it was not devised to compute minima or maxima of real-valued
functions, it has proved to produce competitive solutions in such space ([18,19]).
Next are presented the ES variants used in this work.

Evolutionary Strategies(µ + λ), (µ , λ) and Evolutionary Strategy
There exists some variants for the Evolutionary Strategy, some of which depend
on the selection for the new population, and others have a different mutation
method.

One of the variants is the (µ+ λ)-ES, in which from a population of µ parents,
there is generated λ descendants that are added to the original population, and,
to keep the population size constant, the worst out of all µ + λ individuals are
discarded [20].

Another variant is the (µ,λ)-ES, where from a population of µ parents,
there is generated λ descendants and the selection takes place only among the
generated offsprings, whereas their parents are forgotten no matter how good
or bad their fitness was compared to that of the new generation. This strategy
requires that λ > µ [20].

The third variant that is included in this work is a slightly modified Evolu-
tionary Strategy (modified-ES), which is similar to the previous ones mentioned,
but where the reproduction stage is not necessary, and there is the possibility of
another type of operator for the mutation (Cauchy distribution mutation) [9].

12

José S. Altamirano, Manuel Ornelas, Andrés Espinal, Raúl Santiago, Héctor Puga, et al.

Research in Computing Science 96 (2015)

The algorithm includes the parameter ρ, which is the number of parents that
are going to take part in the reproduction. In the case of the first two variants,
we considered a number of two parents giving the configuration (µ/2+, λ); and
(µ/1 + λ) for the modified-ES, because only one parent was used.

The Algorithm 1 is based in [18], with some modifications to make it more
general. The representation of each individual (χ) is composed of the object
variables (x1, . . . , xn), being n the dimension of the problem, and some strategy
parameters (η1, . . . , ηn) of the mutation operator (the standard deviations). In
the (µ/2+, λ) version, there is a parent’s selection, a recombination and a final
modification using a random number from a Normal Distribution. On the other
hand, in the (µ/1 + λ) version the mutations are applied directly on every
individual to generate the offspring. Finally, the population is replaced according
to the applied version.

Algorithm 1 (µ / ρ +, λ)-ES

Begin
g← 0
Initialize and evaluate popgµ = {χi | i = 1, . . . , µ}
repeat

for l=1 to λ do
if variant != modified-ES then

parents = marriage (popgµ, ρ) // selection through binary tournament
χ̃i= recombination(parents) // using intermediate recombination
χ̃′
i= mutationNormal(X̃i) // mutation using a Normal distribution

if variant == modified-ES then
r ← U [0, 1]
if r < 0.5 then

χ̃′
i= mutationNormal(χ̃i) // mutation using a Normal distribution

else
χ̃′
i= mutationCauchy(χ̃i) // mutation using a Cauchy distribution

if typeSelection == (µ, λ) then
popg+1

µ = selection(popgλ) // Replace population with the created offspring
else if typeSelection == (µ+ λ) then

popg+1
µ = selection(popgµ,popgλ) // Select new population from both the parents

// and offspring populations

g← g + 1
until Stopping criteria
End

The marriage refers the way in which the ρ parents will be selected, in this
work it was determined by using binary tournament selection. The intermediate
recombination was made using Eq. (5) for the object variants and Eq. (6) for
the standard deviations:

x̃l(j) = rx̃r1(j) + (1− r)x̃r2(j) ∀j | j = 1, . . . , n (5)

13

Comparing Evolutionary Strategy Algorithms for Training Spiking Neural Networks

Research in Computing Science 96 (2015)

η̃l(j) = rη̃r1(j) + (1− r)η̃r2(j) ∀j | j = 1, . . . , n (6)

where r is a U[0,1] and r1 and r2 are the parents selected in the marriage.
In the case of modified-ES it is not necessary to choose the parents due to the
fact that each offspring is only a mutation of one parent.

The Normal mutation is made using the Eq. (7), and the Cauchy mutation
for the modified-ES is made using Eq. (8). The standard deviations updates are
part of each mutation and are made using Eq. (9).

x̃′l(j) = x̃l(j) + η̃′l(j)N(0, 1) (7)

x̃′l(j) = x̃l(j) + η(j)δj (8)

η̃′l(j) = η̃l(j)e
τ ′N(0,1)+τNj(0,1) (9)

Where:

– n represent the problem dimension

– τ ′ = 1/sqrt(2× (n)) and τ = 1/sqrt(2× sqrt(n))

– N(0, 1) denotes a normally distributed one dimensional random number
with mean 0 and standard deviation 1. Nj(0, 1) indicates that the random
number is generated anew for each value of j.

– δj is a Cauchy random variable, and it is generated anew for each value of j
(Scale = 1).

The selection for the (µ + λ) includes elitism, to keep track of the better
individuals, and is made through tournament selection.

4 Experiments and Results

Three classical benchmarks of pattern recognition from UCI[12] were used for
experimentation: Brest Cancer Wisconsin (BCW), Iris Plant and Wine dataset.

4.1 Brest Cancer Wisconsin

The BCW data set consists of 683 samples belonging to two groups, namely
benign and malignant cell tissues. Each data point is described with 9 attributes,
represented by an integer ranging from 1 to 10 with larger numbers indicating
a greater likelihood of malignancy. The data set is split into two parts, training
and test data sets with 342 and 341 samples in each set respectively. The desired
timing outputs where set to 6ms. for the benign class, and 10ms. for the malign
class.

14

José S. Altamirano, Manuel Ornelas, Andrés Espinal, Raúl Santiago, Héctor Puga, et al.

Research in Computing Science 96 (2015)

4.2 Iris Plant

The Iris plant dataset contains 3 classes of which 2 are not linearly separable,
each class is formed by 50 patterns, where each one of them is described by 4
features. The desired timing outputs for setosa, versicolor and virginica classes
are respectively 6, 10 and 14 ms.

4.3 Wine Data Set

These data are the results of a chemical analysis of wines grown in the same
region in Italy but from three different cultivars. The analysis determined the
quantities of 13 constituents (variables) found in each of the three types of wines.
The desided timing outputs for each clase are 6ms. for class 1, 10ms. for class 2
and 14ms. for class 3.

4.4 Experimental Methodology

Due to computing times and statistical reasons, the experiments were carried
out by applying 33 independently trainings for each dataset with every variant
of Evolutionary Strategy. For feeding the SNN, pattern’s dataset were codified
by using four Gaussian Receptive Fields (GRFs) [7]. The SNN configuration for
all problems was as follows: the neurons input layer depends on the GRFs, which
varies by dataset features, 10 neurons into the hidden layer and 1 neuron into
the output layer. All neurons from hidden and output layers had τ = 9 and θ =
1. The simulation time was 20ms. [11].

The Evolutionary Strategy configuration for all experiments was: µ = 30, λ =
30 individuals, 15000 function calls as end criteria, and initial Standard deviation
in the range U [0, 1], which were choosen by empirical experimentation. The
weight boundaries were [-1000, 1000] and the delay boundaries were [0.1,16] [9].

Table 1 shows the best fitness values achieved for each ES in each dataset over
33 training runs. The classification performance for both training and testing sets
by the using the best results achieved by each ES are showed in Table 2.

Table 1. Results of the best fitness values for the training process of SNNs

Fitness
Data Set (modified-ES) (µ+ λ)-ES (µ, λ)-ES

BCW 32 29 33
Iris Plant 0 16 15
Wine 6 21 14

15

Comparing Evolutionary Strategy Algorithms for Training Spiking Neural Networks

Research in Computing Science 96 (2015)

Table 2. Comparison of the classification performance for the trained SNNs

Training Set Test Set
Data Set (modif-ES) (µ+ λ)-ES (µ, λ)-ES (modif-ES) (µ+ λ)-ES (µ, λ)-ES
BCW 95.1% 94.13% 94.72% 95.91% 96.78% 95.61%
Iris Plant 100.0% 89.13% 84.0% 94.67% 73.33% 73.33%
Wine 93.18% 76.14% 90.91% 83.33% 60.0% 92.22%

The results show that the modified-ES version had a better performance in
the training process for the three data sets, being able to achieve 100% in the
classification for the training set of the Iris Plant dataset. On the other hand,
even with lower fitness performance, the (µ, λ)-ES achieved good classification in
the BCW and Wine datasets. The (µ+λ)-ES version only had good classification
performance in the BCW dataset.

5 Conclusions

This work compares three metaheuristics on the training of SNNs, and under
the experiment circumstances, it was visible that even when the achieved fitness
value was not too low, it is possible to obtain acceptable classification perfor-
mance.

Based on the best results, the modified-ES showed better performance on
both fitness value and classification.

For future work it is proposed to conduct experimentations with more meta-
heuristics and in more data sets, aiming for a more robust statistical analysis.
Also we propone the research for some different fitness functions, and investigate
the use of Grammar Evolution and Genetic Programming to evolve the neural
network’s structure.

Acknowledgments. Authors thank to Tecnológico Nacional de México, Insti-
tuto Tecnológico de León. The first author wants to thank to Consejo Nacional
de Cienćıa y Tecnoloǵıa (CONACYT) for the economical support to his MS
work.

References

1. Jain, A., Mao, J., Mohiuddin, K.: Artificial neural networks: a tutorial. Computer
29(3), 31–44 (Mar 1996). URL http://dx.doi.org/10.1109/2.485891

2. Maass, W.: Networks of spiking neurons: The third generation of neural network
models. Neural Networks 10(9), 1659–1671 (Dec 1997). URL http://dx.doi.org/

10.1016/S0893-6080(97)00011-7

3. Abeles, M.: Corticonics: Neural circuits of the cerebral cortex. Cambridge:
Cambriedge University Press (1991)

4. Abeles, M., Prut, Y.: Spatio-temporal firing patterns in the frontal cortex of
behaving monkeys. Journal of Physiology-Paris 90(3-4), 249–250 (Jan 1996). URL
http://dx.doi.org/10.1016/S0928-4257(97)81433-7

16

José S. Altamirano, Manuel Ornelas, Andrés Espinal, Raúl Santiago, Héctor Puga, et al.

Research in Computing Science 96 (2015)

5. Hopfield, J.J.: Pattern recognition computation using action potential timing for
stimulus representation. Nature 376(6535), 33–36 (Jul 1995). URL http://dx.

doi.org/10.1038/376033a0

6. Maass, W.: Noisy spiking neurons with temporal coding have more computational
power than sigmoidal neurons. Advances in Neural Information Processing Systems
9, 211–217 (1997)

7. Bohte, S.M., Kok, J.N., La Poutr, H.: Error-backpropagation in temporally en-
coded networks of spiking neurons. Neurocomputing 48(1-4), 17–37 (Oct 2002).
URL http://dx.doi.org/10.1016/S0925-2312(01)00658-0

8. Belatreche, A.: Biologically Inspired Neural Networks: Models, Learning, and
Applications. VDM Verlag Dr. Mller, Saarbrcken (2010)

9. Belatreche, A., Maguire, L.P., McGinnity, M., Wu, Q.: An evolutionary strategy
for supervised training of biologically plausible neural networks. In: The sixth
international conference on computational intelligence and natural computing
(CINC), proceedings of the 7th joint conference on information sciences, pp.
1524–1527. USA (2003)

10. Belatreche, A., Maguire, L.P., McGinnity, M.: Advances in design and application
of spiking neural networks. Soft Computing 11(3), 239–248 (Oct 2006). URL
http://dx.doi.org/10.1007/s00500-006-0065-7

11. Espinal, A., Carpio, M., Ornelas, M., Puga, H., Melin, P., Sotelo-Figueroa, M.:
Comparing metaheuristic algorithms on the training process of spiking neural
networks. Studies in Computational Intelligence pp. 391–403 (2014). URL
http://dx.doi.org/10.1007/978-3-319-05170-3_27

12. Lichman, M.: UCI machine learning repository (2013). URL http://archive.

ics.uci.edu/ml

13. Zurada, J.: Introduction to Artificial Neural Systems. West Publishing Co., St.
Paul, MN, USA (1992)

14. Judd, J.: Neural network design and the complexity of learning. Neural Network
Modeling and Connectionism Series, Massachusetts Institute Technology (1990)

15. Gerstner, W., Kistler, W.M.: Spiking Neuron Models: Single Neurons, Populations,
Plasticity. Cambridge University Press (2002)

16. Haykin, S.: Neural Networks: A Comprehensive Foundation. Prentice Hall PTR,
Upper Saddle River, NJ, USA (1998)

17. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification (2Nd Edition). Wiley-
Interscience (2000)

18. Beyer, H.G., Schwefel, H.P.: Evolution strategies. a comprehensive introduction.
Natural Computing 1(1), 3–52 (2002). URL http://dx.doi.org/10.1023/A:

1015059928466

19. Rechenberg, I.: Evolutionsstrategie: optimierung technischer systeme nach prinzip-
ien der biologischen evolution. Frommann-Holzboog (1973)

20. Schwefel, H.P.: Numerische optimierung von computer-modellen mittels der evo-
lutionsstrategie (1977). URL http://dx.doi.org/10.1007/978-3-0348-5927-1

17

Comparing Evolutionary Strategy Algorithms for Training Spiking Neural Networks

Research in Computing Science 96 (2015)

